National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Statistic evaluation of phylogeny of biological sequences
Vadják, Šimon ; Provazník, Ivo (referee) ; Škutková, Helena (advisor)
The master's thesis provides a comprehensive overview of resampling methods for testing the correctness topology of the phylogenetic trees which estimate the process of phylogeny on the bases of biological sequences similarity. We focused on the possibility of errors creation in this estimate and the possibility of their removal and detection. These methods were implemented in Matlab for Bootstrapping, jackknifing, OTU jackknifing and PTP test (Permutation tail probability). The work aims to test their applicability to various biological sequences and also to assess the impact of the choice of input analysis parameters on the results of these statistical tests.
Comparison of mitochondrial DNA for species identification
Labounek, René ; Provazník, Ivo (referee) ; Maděránková, Denisa (advisor)
The work deals with the method of recognizing species on the analysis of mitochondrial DNA segment. This analysis and classification using segment gene called CO1 in literatures such as barcode of life. In the beginning of work is analyzed the mitochondrial theory of heredity and conditions of formation of barcode. Practical use is based on this theory in creating database of barcodes generated to different animal species. Data used for creating the library are drawn from public databases NCBI and BOLD Systems. The next part of this work concerns about methods of comparison of the individual barcodes to the others and especially to the barcode of human. Three main computing methods were used tore these analyses: Needleman-Wunsch algorithm, Smith- Waterman algorithm and comparison of similarities using distance matrix. This work also concerns about transformation of DNA molecule sequences from symbols to numeric formats, which is required for the distance matrix comparison method. Algorithms for searching for a barcode of a species and vice versa were created to ease the work with data.
Digital image analysis of mitotic chromosomes
Hávová, Mariana ; Babula, Petr (referee) ; Škutková, Helena (advisor)
Changes in chromosome number and structure may cause serious diseases. Cytogenetic tests leadin to set of karyotype are done for detecting these abnormalities. Chromosomes are visualised with proper methods and karyotype is made up most often. Manual karyotyping is time-consuming and expensive task. Because of this, researchers have been developing automated karyotyping systems. Karyotyping systems classify chromosomes into classes based on their characteristic features. Overlapping and bent chromosomes are limitations for automatic classification since they ocur at almost every mitosis. Accuracy and reliability of karyotyping systems still depend on the human intervention. Overcoming of these problems and development of fully automated system is the aim of modern approaches.
Comparison of mitochondrial DNA for species identification
Labounek, René ; Provazník, Ivo (referee) ; Maděránková, Denisa (advisor)
The work deals with the method of recognizing species on the analysis of mitochondrial DNA segment. This analysis and classification using segment gene called CO1 in literatures such as barcode of life. In the beginning of work is analyzed the mitochondrial theory of heredity and conditions of formation of barcode. Practical use is based on this theory in creating database of barcodes generated to different animal species. Data used for creating the library are drawn from public databases NCBI and BOLD Systems. The next part of this work concerns about methods of comparison of the individual barcodes to the others and especially to the barcode of human. Three main computing methods were used tore these analyses: Needleman-Wunsch algorithm, Smith- Waterman algorithm and comparison of similarities using distance matrix. This work also concerns about transformation of DNA molecule sequences from symbols to numeric formats, which is required for the distance matrix comparison method. Algorithms for searching for a barcode of a species and vice versa were created to ease the work with data.
Statistic evaluation of phylogeny of biological sequences
Vadják, Šimon ; Provazník, Ivo (referee) ; Škutková, Helena (advisor)
The master's thesis provides a comprehensive overview of resampling methods for testing the correctness topology of the phylogenetic trees which estimate the process of phylogeny on the bases of biological sequences similarity. We focused on the possibility of errors creation in this estimate and the possibility of their removal and detection. These methods were implemented in Matlab for Bootstrapping, jackknifing, OTU jackknifing and PTP test (Permutation tail probability). The work aims to test their applicability to various biological sequences and also to assess the impact of the choice of input analysis parameters on the results of these statistical tests.
Digital image analysis of mitotic chromosomes
Hávová, Mariana ; Babula, Petr (referee) ; Škutková, Helena (advisor)
Changes in chromosome number and structure may cause serious diseases. Cytogenetic tests leadin to set of karyotype are done for detecting these abnormalities. Chromosomes are visualised with proper methods and karyotype is made up most often. Manual karyotyping is time-consuming and expensive task. Because of this, researchers have been developing automated karyotyping systems. Karyotyping systems classify chromosomes into classes based on their characteristic features. Overlapping and bent chromosomes are limitations for automatic classification since they ocur at almost every mitosis. Accuracy and reliability of karyotyping systems still depend on the human intervention. Overcoming of these problems and development of fully automated system is the aim of modern approaches.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.